
General Advice
Read the question carefully and:

• Follow the description in the question with respect to terminology.

• If you are uncertain about details, spell this out clearly in your answer.
For example, if you are not sure what are the assumptions about the
threat model in the question, state in your answer how you interpreted
the question.

• Make sure you answer all subquestions.

Question: Memory leaks (all versions)

Error 1: Confusing the direction in which data is written on the stack. Many
try to overwrite variables inserted in the stack after the variable on which there
can be an overflow. This will not work, as data is inserted in the stack in the
other direction.

Error 2: Forgetting to check whether overwritten variables are updated. Many
use an overflow to overwrite a variable, and assume that the value assigned in
the overwrite will stay without analyzing the rest of the program. If the over-
written variable is assigned a new value before the use, then the exploit cannot
be successful.

Error 3: Forgetting that to overwrite a return address more things need to be
overwritten. Many use an overflow to overwrite a return address. While doing
this they do not consider that between the variable they are overflowing and
that return address there are more variables that may make the program fail
or run into undefined behaviour. Unless there was an explicit indication of how
the return address would be overwritten without damage these answers were
penalized.

Error 4: Forgetting negative indexes. When checking bounds for variables, many
forgot to check overflow in the direction of the start of the array. Negative in-
dexes also access memory that is not reserved.

Question: Hacking NotSoSec

Error 1: Incorrect description of non-CSRF attack. Some of you described at-
tacks that are not Cross-site Request Forgeries (for example, brute force, XSS,
etc.). The descriptions of how these attacks were carried out did not apply to
the scenario described in the system. Note that if you stated your assumptions
and the attack was plausible based on the scenario and the assumptions, you
would receive points.

1

Error 2: For a CSRF, it is the cookies of the victim site that are relevant. When
describing the session cookies, it is the cookies of the director on the bank’s site
(stored in the browser) that are relevant to the problem, and are used in the
checks provided in the code snippet. It is not the cookies of the director on the
weather site.

Question: Authentication mechanism (all versions)

Error 1: Storing a password as a salted hash prevents dictionary attacks. Stor-
ing passwords as a salted hash with a different salt for each password, does not
entirely prevent an attacker from revealing a user’s password. An adversary
who gets access to the bank’s database could still brute-force a user’s password
given the hash function and the specific salt stored alongside the password.
Brute-forcing one user password has the same cost as brute forcing without a
salt (the adversary needs to run the dictionary with the salt associated to that
password). What salts prevent are massive attacks in which with one compu-
tation the adversary can break many passwords at the same time, as they now
have to repeat the attack for every new password she wants to crack.

Error 2: No discussion of usability or security aspects. Some have not explic-
itly discussed either usability of security aspects of one of the options, or did
not justify them. Please read the question carefully.

Question: Cryptographic Exchange (all versions)

Error 1: It is possible to extract the signed message from a signature. Many
answers assumed there is an extraction or “decryption” functionality in the
signature. Digital signatures consist of two algorithm: Sign (creating a signature
on a message) and Verify (verify the signature is valid). Verify algorithms do
not generally enable to recover the message.

Note: Formally, a signature scheme does not provide confidentiality. In
practice, however, extracting messages from most signature schemes is as hard
as computing first pre-image for hash functions. If you can guess/brute-force
the message then you can verify your guess, but otherwise you cannot extract
the message. Unless you specifically mention that you are assuming a digital
signature known to not provide confidentiality, we did not accept “extraction
of a message from a signature” as there is no decryption procedure in signature
schemes.

Error 2: Misunderstanding of asymmetric cryptography. Some answers did not
use private and public keys correctly. In a signature scheme, a signature is
created using the signer’s private key (which is private by definition), and is
verified using the signer’s public key (which is publicly known by definition).
It cannot be the other way around. In an asymmetric encryption scheme, a
ciphertext is created using the receiver’s public key, and can be decrypted using

2

the receiver’s private key. Similarly, it cannot be the other way around.

Error 3: Using “encode” and “decode” instead of encrypt and decrypt. As noted
in the lecture, “Encode” and “decode” are different from encryption and decryp-
tion in that encoding/decoding require only knowledge of an algorithm, while
encryption/decryption require knowledge of an algorithm and a key. Using
encoding to describe encryption algorithms is incorrect (if messages would be
encoded, the system would be insecure).

Error 4: Forgetting that a signature ensures integrity. Some students wrote that
there is no integrity in the protocol “k1, Enc(pkb, k2), Stream(k1 xor k2, m),
Sign(ska, m || k1)” as there is no MAC on the message. However, when Alice
signs “Sign(ska, m || k1)”, the signature ensure the integrity of both m and k1
besides non-repudiation.

Error 5: You can have non-repudiation for a message which does not guaran-
tee integrity. Some student wrote that the protocol “Enc(pkb, k), Sign(ska,
k), Stream(k, m)” provides non-repudiation despite having no guarantee for
integrity. The adversary can modify “Stream(k, m)” and there is no integrity
check to detect this. The signature ensures that the key k is coming from Alice,
but Alice can argue that “Stream(k, m)” is not her message and an adversary
has changed it in transit, or Bob has created a new message m’ after receiving
an original message m and a signature on k.

Error 6: Non-repudiation of having a conversation. Many answered that Alice
cannot repudiate a message because there is a signature in the exchange.

The question asked about Alice being able to repudiate “the message”, which
is explicitly the specific message m sent to Bob (“Alice sends a message m to
Bob as follows:”)

The fact that Alice may not be able to deny having a conversation with Bob,
as there is a signature signed with her private key in the exchange, does not
mean that she cannot repudiate the message m if this message is not protected
by the signature.

Error 7: Treating “Stream(k, m)” as random string generator. The problem
specifies that “Stream(k, m)” is a encryption the message m with the key k.
This is an encryption function which should not be confused with the internal
mechanism of how stream ciphers work. In the lecture slides, we explain the
internal mechanism of stream ciphers as creating a random string based on the
key and the IV as “Stream(K, IV)” then xor it with the message.

There is a name similarity between the slides and the question, but the def-
inition and parameters of functions in the question are clear.

Error 8: Length of the one-time pad key. What matters for the security of a
one-time pad is that the random key is at least as long as the message. Any
excess bits of the key can be discarded, or, equivalently, the message can be

3

padded to the length of the key. Thus, the fact that the key is longer than the
message is not a problem.

Error 9: Message repetition in a one-time pad. Two ciphertexts encrypted with
a one-time pad are vulnerable to frequency attacks if the key is reused. But,
there is no issue in sending a message m multiple multiple times as (m xor k1)
xor (m xor k2) only reveals information about k1 xor k2 for two random keys.

4

